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A method is developed for obtaining the generating functions for the 
equivalence classes of orbitals wherein only orbitals within an equivalence 
class participate in symmetry adaptation. It is shown that using Williamson's 
combinatorial theorem the generating functions for the symmetry species 
contained in each equivalence class can be obtained. The method is illustrated 
with Porphindianion, 
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1. Introduction 

The construction of symmetry-adapted orbitals from atomic orbitals is of con- 
siderable importance in quantum chemistry. Such symmetry-adapted orbitals 
constructed as linear combinations of atomic orbitals are referred to as symmetry 
adapted linear combinations (SALC) by Cotton [1]. The usual procedure for 
constructing these orbitals (see Cotton, for example) is to find the characters of the 
set of atomic orbitals under the action of the molecular point group. Then one 
applies the projection operator which corresponds to each irreducible represen- 
tation. However, this method does not explicitly separate the set of atomic orbitals 
into equivalence classes, wherein only the orbitals within a class mix in any SALC. 

Further, when the method developed here is combined with the representation 
theory of generalized wreath product groups [2] and the group theoretical 
concepts in NMR spectroscopy [3], the NMR spin species and spin functions can 
be generated as we will show in a subsequent publication. For reviews on several 
chemical applications of graph theory see the book of Balaban [4]. 

* Present address: Department of Chemistry, University of California, Berkeley 94720, USA 

0040-5744/81/0059/0047/$01.60 



48 K. Balasubramanian 

The first objective of this paper  is to give a method for separating the atomic 
orbitals into equivalence classes by a special case of the theorem described here. A 
combinatorial  theorem following Williamson [5] is outlined which enables the 
generation of symmetry  species in each equivalence class. The projection opera-  
tor which corresponds to each symmetry  species is applied on the orbitals 
belonging to that class to generate SALCs. The procedure is illustrated with 
Porphindianion. 

2. Theory 

Let G be the molecular point group. Let  D be a set of atomic nuclei or atomic 
orbitals depending upon the context. G acts on D as a group of permutat ions of D. 
Let R be a set containing two elements. Let  F denote  the set of all maps from D to 
R. If G acts on D it also acts on F in that if f s F then g (f(i)) = f(g-a i), i ~ D. Thus 
the map f-->gf defines the action of G on F. Let V be a [R[-dimensional vector 
space over  a field K of characteristic zero [6]. Let V a = @d V be the d th tensor 
product  of V. Assume D is a discrete set which is usually the case. Let  el, e2 . . . . .  
eJRI be a basis for V with d=[DI. To each f ~ F ,  we can assign an er= 
era) |  �9 �9 | e r can be seen to be a tensor. The set of tensors S = {e;: f c F }  
forms a basis for the tensor product  V a. Define for any g ~ G, P(g)e r = egt. Thus 
P(g) is a permuta t ion  opera tor  relative to the basis S since it permutes  the tensors 
in S by way of the action of g on the functions. Consider the map fl  f rom G to K, 
f I :G->K. In addition let l q ~ 0  and fl  be an homomorph i sm (i.e., D(glg2) = 
~(gl)fl(g:)) [7]. Now let us define an opera tor  which we shall call a symmetry 
opera tor  as follows. 

1 
T~  : ~ [  g~GE fl(g)P(g). 

Consider a map W from F to K, W : F--> K which is also a constant on the orbits 
resulting f rom the action of G on F. Alternatively, with each f ~ F ,  there is an 
associated element  f rom the field K. In addition if W satisfies the following 
proper ty  for every f, it is referred to as a weight function. 

d 

w ( f )  = [I w( f ( i ) )  
i = l  

where w is a function, w: R --> K ;  W(f )  is also referred to as a weight of a function 
in combinatorics books [8]. 

Now consider the subspace V d of V d spanned by all tensors Sx = 
{efj W ( f )  = x ~ K}.  Let the restrictions of the operators  TG and P(g) to the space 
Vx be T ~  and Px(g), respectively. Thus one can define a weighted permutat ion 
opera tor  and a weighted symmetry  operator  with the weight W, denoted as 
Pw(g),  T ~  by the following expressions. 

Pw(g) = ~ xPx(g) 
x E K  

T W = @ x r ~  
x ~ K  



The Combinatorics of Symmetry Adaptation 49 

where @ denotes finite direct sum with respect to the associated subspaces V~ 
and x's vary over the elements of R. In a matrix representation of Pw(g),  

(g) 
Tr Pw(g) = ~ W(f ) ,  

f 

where the sum is taken over all f for which g f = f .  In this set up Williamson 
[5] proved the following theorem 

Theorem (Williamson): 

r W 1 
= ~ 1  g~cE fl(g)Pw(g).  

Consequently 

w 1 
Tr To  = ~-~ ~ o  (g) Tr (nw(g)) 

1 (g) 
= - -  E a ( g ) E  w(f).  

Define the cycle index of a group G with character X of an irreducible represen- 
tation F of G, as 

1 bl b2 P~(xl ,  x2 . . . .  ) =~-~E x(g)x l  x2 . . .  

b a b 2 where Xl x2 . . .  is a representation of a typical permutation g c G having bl 
cycles of length 1, b2 cycles of length 2, etc. Then by the theorem mentioned above 
Tr T w which is a generating function for the irreducible representation whose 
character is X, is given by 

) T r T v ~ - P o  ~. w(r), • (w(r)) a . . . . .  
\ r ~ R  r ~ R  

In particular for the identity representation of G 

( ...) T r T o  =PG 2 w(r), 2 (w(r)) 2, 
\ r E R  r ~ R  

which represents the generating function for sets of functions in F containing the 
identity representation or equivalently G-equivalence classes of F, since each 
equivalence class contains exactly one identity representation. Thus in this special 
case Williamson's theorem reduces to the well-known P61ya's theorem [8]. 

3. Illustration of the Method with Porphindianion 

Let us illustrate the use of the above formalism with Porphindianion as an 
example. Balaban [9] enumerated the isomers of substituted porphyrins using the 
symmetry of the parent porphindianion (see Fig. 1) whose molecular point group 
is D4h. The problem we consider here is to construct the SALCs of the pz-orbitals 
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Fig. 1. Porphindianion. The equivalence 
classes of orbitals and the symmetry spe- 
cies contained in each class which were 
generated combinatorially are shown in 
Table 1 

perpendicular to the plane of the molecule. All the 20 carbon pz-orbitals do not 
mix in any of the SALCs. The above problem first reduces to finding the 
equivalence classes of 20 nuclei such that only those pz-orbitals centered on the 
nuclei in a class mix to form a SALC. As far as the author is aware it appears that 
there is no organized technique for enumerating these classes, in general. The 
solution for this problem is obtained by setting X to be the character of the identity 
representation in the theorem outlined in Sect. 2. Let  D be the set of 20 carbon 
nuclei. Let  0/, and 0/2 be the elements in K which are the weights of elements in R. 
Then for this case 

Tr T w 1 D4h = [2(O/1 +0/2)20+4(0/14 +0 /4 )5  

+6(0/2 +0/22),0+4(0/1 2 2 2 9 +0/2) (0/, +0/2) ]. 

The coefficient of ,9 a ~ 0/2 in the above expression gives the number of patterns or 
the number of identity representations in each pattern. This is equal to 

2 

16 

The classes of nuclei are 

C , ={1 ,  2, 6, 7, 11, 12, 16, 17} 

C2={3, 5, 8, 10, 13, 15, 18, 20} 

C3 = {4, 9, 14, 19}. 

To construct the SALCs now we look at the transformation properties of vectors 
perpendicular to the plane of the molecule belonging to a class. A generating 
function for the irreducible representations in the class Ci can be obtained by 



The Combinatorics of Symmetry Adaptation 

Table 1 

51 

Irreducible Frequency of 
S. No. representation Class GF occurrence 

1. Alg C1, C2 0 0 

2 A2g C1, C2 0 0 

3. Big C1, C2 0 0 

4. B2g C1, C 2 0 0 
7 6 2 5 3 4 4 3 5 

14a' 10" 2 2 + 16a ~a2 + 5. Eg C1, C2 2 a l a 2 + 6 a l a 2  + 14ot l a 2  
2 6 7 

+ 6 a t a 2  + 2alCe2 

6. Alu C1, C 2 7 6 2 5 3 4 4 3 5 a l a 2 + 2 0 " l o ~ 2  + 7 a l a e  2 + 7 a a a  2 + 7 ~ 1 a  2 1 
2 6 7 

+ 2o~10" 2 4- 0" 1 o~ 2 

7. A 2 u  C1 ' C2 0"8 7 6 2 5 3 4 4 3 5 +0"laz+60"x0"2 +70"1c~2 + 13al0"2 + 7 C t l a 2  1 
2 6 7 

+60"10"2 +0"10"2 + 0 ' 8  

7 6 2 5 3 4 4 3 5 
8. B l u  C1, C 2 0" 10"2 +40"10"2 + 7 a  l a 2  + 9 a  l a 2  + 7 a  l a 2  1 

2 6 7 
+40" 10"2 + 0"la 2 

7 6 2 5 3 4 4 3 5 9. B2u  C l ,  C 2 a 1 0 " a + 4 a l a 2 + 7 0 " l a a + g a a a 2 + 7 0 " l a 2  1 
2 6 7 

+40"10"2+0"10"2 

10. E~ C> C2 0 0 

11. Alg C3 0 0 

12. A2g  C3 0 0 

13. ~ l g  C 3 0 O 

14. B2g C3 0 0 

3 2 2 3 
15. Eg C3 0" 10~2 l- a lff 2 + 0" 10"2 1 

16. AI,, C3 0 0 

17. A 2 u  C3 041 3 2 2 3 +0"10"2+20'10"2 +0"10"2 + 0 4  1 
3 2 2 3 

18. B l u  C3 0"10"2 + a l a  2 + a l a  2 1 

2 2 
10. B2u C3 0"10'2 0 

20. E.  C 3 0 0 

finding Tr T~V4h with W being the weight restricted to Ci, with the fol lowing 
definition of P~.  Let di denote  a vector centered on the atom di perpendicular to 
the plane of the paper. Then define 

1 bl 52 P ~ [ C / ] = 7 ~  Z e g X ( g )  x l  x2  . . .  
It-ri gcG 

where 

e g = { 1 1  otherwise.ifgdi=-dk f o r s o m e k  
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Cj denotes the set of vectors centered on the nuclei in the class Cj. Now by 
Williamson's theorem 

GFCi(ri).-~e~[f~](Xk~lOLkl) 
where GFC~(F~) denotes the generating function of irreducible representation F~ 
whose character is g contained in the class C i. Expressions thus obtained for all 
irreducible representations of D4h and for each equivalence class are shown in 
Table 1. The coefficient of a~- la2  in each expression, where m = Ic, I gives the 
number of times the irreducible representation Fg occurs in the set Ci. They are 
indicated in the last column of Table 1. The complete generating function for all 
f 's in F is shown in Table 1, even though for the present problem only the 
coefficient of a '~- la2  is significant. However, the other coefficients do have 

m 1 m combinatorial significance viz, a typical coefficient a l  a2 ~ in the generating 
function which corresponds to the irreducible representation F and the class (71. 
represents the number of colorings of vectors with ml colors of the type 1 and m2 
colors of the type 2 that belong to the irreducible representation F and the class C,. 
We also note the following results which can be proved in general, namely, 

n G 

dim (F~)GF%(F~) = (ffl -{'- 0 /2)  ICjl 
i = 1  

where dim (Fz) is the dimension of the irreducible representation Fi; nG is the 
number of irreducible representations in G. 

Now the projection operator which corresponds to each irreducible represen- 
tation of p-orbitals is applied on that class. This yields an orthogonal set of 
symmetry adapted orbitals. The SALCs thus obtained for Porphindianion are 
shown in Table 2. 

The results of Porphindianion are simple but sufficient for the sake of illustration. 
A nontrivial example would be that of polycyclic fully pericondensed compounds. 
A few of these served as illustrative examples elsewhere [10] (see Figs. 3 and 4). 
For these compounds the number of equivalence classes grows as l 2, where I is t he  
number of layers (see Ref. [10]). For a compound containing 8 layers there are 36 
equivalence classes as predicted by this method. The irreducible representations 
in each class can also be generated combinatorially. 

In this paper we considered the combinatorics of symmetry adaptation. A method 
for enumerating the equivalence classes of nuclei under the action of molecular 
point group was expounded as a special case of the theorem presented here. 
Further, the generating functions for the irreducible representations contained in 
each class were obtained with a theorem of Williamson. The use of the present 
procedure for the enumeration of Gel'fand tableaux and the construction of 
symmetry-adapted spin functions will be the subject of a future paper [11]. The 
procedure developed here is especially useful in generating symmetry-adapted 
NMR spin functions. The usual method to obtain the classes and the symmetry 
species in each class would require the complete character table. However, the 
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Irreducible 
S. No. Class representation SALC 

1. {1,2,6,7, 
11, 12, 16, 17} A2u 

2. {3,5,8,10, 
13, 15, 18, 20} 

3. {4, 9, 14, 19} 

Alu 

Blu 

B2u 

G 

G 

A2u 

Blu 

t~2 u 

G 

G 

A2u 

Blu 

Eg 

1 
~ 8  (~1 -}- 4,2 q- ~ 6  -1- 4,7 4. ~ 11 -t- ~ 12 -{- ~164.  ~ 17 ) 

8 (~1 -- ~ 2 4 .  ~ 6 - -  ~ 7 4 .  ~11 -- ~12 4. ~ 1 6 - -  ~17)  

~ (4,1 -- 4,2 -- 4,6 4. 4,7 4. 4,11 -- 4,12 -- 4'16 4- 4'17) 

~ ( 4 ' 1 4 -  4,2 -- 4,6 -- 4 7  4- 4' 4- 4,12 -- 4'16 -- 4,17) 11 

{ �89 4 , 2 -  4'11 -- 4'12) 

~(4,~ + 4,~ - 4,16- 4'17) 

{ �89 4,2- 4 'n  + 4,,2) 
1(4'6 -- 4,7 -- 4'16 4. 4'17) 

1 
~ (4'3 4. 4'5 4. 4'8 4. 4'10 4. 4' 13 q- 4'15 4. 4'18 4. 4'20) 

1 
(4,3 -- 4,5 4- ~S -- 4,10 -- 4'13 4- 4'15 q- 4'18 -- 4,20) 

1 
(4,34-4,5 -- 4 '8- -  ~10 4. 4' 13 4. 4' 15 -- 4'18 -- 4'20) 

1 
~88 (4,3 -- 4,5 -- 4,8 4- (/~10 -- 4'13 4- 4'15 -- 4'18 4- 4,20) 

t 1(4,3 4. 4 '5- -  4'13 -- 4' 15) 

�89 + 4'1o- 4'18- 4'ao) 
�89 4'5- 4'13 + 4'~) 
1(4'8 -- 4'10 -- 4'18 4- 4,20) 

�89 q- 4'9 4. 4' 14 4. 4' 19) 

�89 059- 4'14 + 4'19) 

~ (4,4- 4' 14) 

~22 (4 '9- a19) 

m e t h o d  d e v e l o p e d  he re  can g e n e r a t e  the  s y m m e t r y  spec ies  and  classes w i thou t  
knowing  the  cha rac t e r  t ab les  of N M R  groups  (wrea th  produc ts ) ,  for  these  
gene ra t i ng  funct ions  can be  g e n e r a t e d  c o m b i n a t o r i a l l y  by  knowing  jus t  the  
cha rac t e r  t ab les  of the  c o m p o s i n g  groups  of wrea th  p roduc t s .  
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